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Note 

The Evaluation of Integrals with Oscillatory Integrands* 

We present here an extension to Filon’s method for the evaluation of oscillatory 
integrals with infinite limits. The method amounts to producing an asymptotic ex- 
pansion for the original integral. The qualitative relevance of our results is indicated. 

There are a few methods available for the evaluation of integrals of the form 

I(r) = rrn f(k) ;$kr dk, 
JO 

which frequently occur in investigations in mathematical physics. 
The methods adopted by Hurwitz and Zweifel [l], Hurwitz, Pfeifer, and 

Zweifel [2], Saenger [3], and Balbine and Franklin [4], converting the infinite 
integral into a summation by subdividing the range and performing the integration 
between successive zeros of sin coskr prove to be not completely satisfactory in all 
cases. 

This is particularly true for cases where the approximating series does not 
converge rapidly. 

The same applies to Longmann’s [5] approach in which he used a variation of 
Euler’s transformation to accelerate convergence. 

A further development of this approach was proposed by Alaylioglou, Evans, 
and Heyslop [6] who investigated the use of the more general nonlinear trans- 
formation of Shank [7] and reported quite satisfactory results. Perhaps, a dis- 
advantage of this approach (and indeed of all subdivision/acceleration algorithms) 
is that the integration limits (a,, a,+3 depend on the parameter r, thus the 
Gaussian-Legendre Integration points have to be retransformed for each of its 
values. This is not apparent when one seeks to evaluate the integral (1) for a few 
values of r, but it might become a laborious task when r assumes a sufficiently 
large number of values. 

The original method, proposed by Filon [8], of approximating f(k) with a 
polymonial of a low degree does not provide for the evaluation of integrals of 
infinite range and cannot be applied directly. 

* This paper is based on part of a MS. thesis by G. Pantis, University of South Africa, 
unpublished. 

229 
Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



230 G. PANTIS 

In this paper we shall show that Filon’s approach gives reasonably accurate 
results if an asymptotic expansion of the original integral is performed. The basic 
idea is to write the integral (1). 

Z(r) = /“f(k) sin kr dk = Z,(r) + Z2(r), 
0 

where 

Z,(r) = lmf(k) sin kr dk, 

Z,(r) = Jaf(k) sin kr dk, 
01 

(2) 

(4) 

and use the Filon’s method for the evaluation of the term Z,(r). Then, provided 
that the function f(k) is suitably behaved, (i.e., f(k) decreases as (l/kp) (p 3 1) 
with increasing k) the term Z,(r) can be accurately approximated by integrating 
by parts. Thus Eq. (4) simply reads: 

(5) 

where the notation (A) indicates the order of the derivative with respect to k. 
Clearly f(O) = J: 

In most cases in practice the TV = 1 or p = 2 approximations will be sufficiently 
accurate whereby the integral term of Eq. (5) can be completely omitted. For 
example consider the function 

f(k) = k/(1 + k2). (6) 

-b@) = (2/r) jom (1 +” k2) sin kr dk = eP = 0.3678794..., at r = 1. (7) 

The p = 2 approximation gives 

A,(l) = 0.3678793..., for 01 = 100, and TN = 700. 

TN is the number of evaluation points in the Filon routine. It is significantly 
smaller for functions f(k) converging faster than Eq. (6). This can be seen by 
considering the integral 

A,(r) = jm x-~ sin xr dx =, -b(r) = -0.0736681, at r=l. (8) n 
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In the TV = 1 approximation we get 
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A,(l) = -0.0736681 for 01 = 30 +VT, TN = 200. 

As a final example consider the integral 

A&) = Jorn x-‘c*/~ sin XT dx = tan-l(2r) = 1.107148718..., at r 1. (9) 

In the p = 1 approximation we get 

or 
A,(l) = 1.107149..., for 01 = 20 and TN = 100, 

A,(l) = 1.107148718, for (II = 30 and TN = 500, 

which is accurate to ten digits. 
The implication of these results is that the accuracy of this approach can be 

further improved by increasing TN or by increasing 01 and TN simultaneously. 
Equation (5) was derived here for easy presentation. In many nuclear physics 

problems, however, integrals of the form (1) frequently occur, where the functions 
f(k) are not known analytically but are only given at a number of points ki . For 
example we encountered recently the problem of the evaluation of Nonlocal 
Potentials and their Equivalent Local ones, from the scattering phase shift. In such 
cases, it is preferable to divide beforehand the range of the integration (0, ol), in 
Eq. (3), into a number of t unequal parts 01~ , such that 

and then apply the Filon routine separately, viz, 

Z,(r) = i Jnit’f(k) sin kr dk. 
i=o Pi 

(11) 

This has the advantage that should the function f(k) not decrease uniformly 
(monotonically), but exhibit one or more maxima in a particular interval 
oli = (pi , JQ+~), a large number of evaluation points ZVi can be used in that interval, 
whilst this same number of points need not be retained throughout the interval 
(0, CX). We should note here that this approach was found useful in computing 
the D-wave function of the deuteron [9] 

wdr> = /m.M, r> V(k) dk 1 = 2, 
II 

(12) 
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where j,(k, r) are the usual Bessel’s functions. As a practical example, we consider 
again the functionf(k) Eq. (6). The results are shown in Table I, where 01 = 400 
and 600 for the same total number of evaluation points T,,, = 144. 

We noticed that this approach is very useful for functions f(k) which do not 
decrease rapidly and thus the interval (0, a) assumes large values. Furthermore 
only one or two terms (p = 0 or 1) are needed to provide a sufficiently high 
accuracy, though with a much smaller number of evaluation points TN. 

TABLE I 

Numerical Error in the Evaluation of A,(r) 

t Pi r I* z(r)Ex - &)Num N 

0 0.2 x IO-5 

1.0 1 0.9 x 10-B 

2 0.9 x 10-e 
4 0,4,16,30, 100,400 50,40, 14,20,20 

0 0.1 x 10-s 

10.0 1 0.9 x lo-’ 

2 0.9 x 10-1 

0 0.5 x 10-B 

1.0 1 0.4 x 10-6 

2 0.4 x 10-e 
4 0,4,16,30,100,600 50,40,14,20,20 

0 0.9 x lo-’ 

10.0 1 0.8 x 10-1 

2 0.8 x 10-7 

It should be mentioned that the accuracy of our method increases as the param- 
eter r increases. This is readily explained: The terms of the series that are omitted, 
are divided by r2A+1 so that they become zero as r becomes large. 

As far as time of computation is concerned, the evaluation of the functionf(k) 
at the integration points is the most time consuming part. This means that for 
calculation at a single value of r the subroutines described here take longer than 
those of other conventional methods. If, however, several values of r are needed, 
these subroutines become very fast, since the evaluation of the function f(k) 
need only be done once. For example we note, that for the function (6) these 
subroutines take 30 seconds, for 40 values of r, on a Burroughs 5700 computer. 

In conclusion it is noted that the method outlined here is a useful tool for 
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evaluating integrals of the form (12) and especially for such functions f(k) which 
are not known analytically. Our method can thus be regarded as a useful supple- 
ment to the normal Filon routine, for an infinite integration range. 

APPENDIX 

All formulae associated with the Filon’s method are given in Filon’s original 
paper [8]. Here we shall briefly discuss the case of an integral of the form 

I(r) = Iorn y j(k) dk, f(k) # 0 at k = 0. 64.1) 

A formula for the evaluation of singular integrals such as (A. 1) was also devised 
by Filon. We noticed, however, that our approach provides for the evaluation 
of (A.l) without the use of this formula: For, if the interval (p,, , pl) is chosen 
small (say 1.0) and a large number of evaluation points is taken, the coefficient 01 
in Filon’s Eq. (16) is almost equal to zero, so that the singular term (in Filon’s 
Eq. (15)) can be set equal to zero without significant loss of accuracy. 
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